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1. The Euler-Lagrange formalism. Generalized coordinates.  
 
If a problem is described by generalized coordinates, usually 
denoted by qi, then the Euler-Lagrange equations determining 
the extrema of a functional F, are  
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As usual, iq means differentiating with respect to time t. 

If the system is a mechanical system, then the Euler-Lagrange equations are the equations of 
motion in the generalized coordinates. For such a system, the Lagrange function is defined by the 
expression:   
(1.2)  L = T - U 
 
In this context the kinetic energy is usually denoted by T, and the potential energy by U. 
Expressed with L, the Euler-Lagrange equations become. 
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Which are the equations of motion to be solved.  
 
In the figure above a system of two coupled pendulums are displayed. The generalized coordinates 
are θ, which is the angular displacement from equilibrium for the upper pendulum, while φ is the 
angular displacement from equilibrium for the lower pendulum.  
The masses for the two pendulums are m1 and m2, and the two pendulum lengths are l1 and l2. 
 
First we determine the potential energy of the system:. 
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The kinetic energy is a bit more circumstantial, and therefore we initially determine the position of 
the two weights as a function of the angles θ and φ. 
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From which we get from differentiating: 
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To obtain the result for (1), we had actually not needed to write down the coordinates, since the 
generalize coordinate to (1) is  1lr  , so that 

 1lr  , but with respect to (2) it is a bit more 

complicated. We determine the kinetic energy from the generalized velocities: 
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The sum of the two squares in the first term gives: 22
122

1 lm , as before, and the sum of the two 

squares in the second term gives  22
222

1 lm , (because cos2 + sin2 =1), and these would be the only 

terms, if there was no coupling, and the Lagrange equation would separate into two equations one 
for each variable. So far so good, but we are left with the two double products. 
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Especially the last term removes every aspiration of solving the equations analytically. 

2. The Lagrange equations for the coupled pendulums. 
Below we have established the Lagrange function. 
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We have chosen to do the calculations in some detail, otherwise it is quite easy to get lost – and 
even then. 
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We proceed to establish the equations of motion step by step, first for the variable θ. 
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Then we proceed to establish the equations of motion step by step for the variable φ 
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As it is always the case, when we have oscillations with moderate deviations of the angle, we can 
approximate 1cossin  xandxx . 
 
The equation of motion for the variable θ. 
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The equation of motion for the variable φ.    
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3. Eliminating either θ’’ or φ’’ from the two equations to obtain two second 
order differential equations as:  θ’’ = F(θ, θ’, φ, φ’) and φ’’ = G(θ, θ’, φ, φ’) 
The equations (2.6) and (2.7) are two coupled second order differential equations, which determine 
the motion of the two pendulums. However since both θ’’ and φ’’, appear in both equations, we 
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have to solve the equations for θ’’ and φ’’.  This is a somewhat algebraic exercise, so it will be 
illustrated with the same number of reductions that I have done myself. 
 
First we eliminate   from the two equations by multiplying (2.6) with l2 and multiplying 
(2.7) with -l1 
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Then we add the two equations: 
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Next we eliminate   by multiplying (2.6) with 212 llm and multiplying (2.7) with )( 21
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1 mml  . 
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For convenience we introduce some shorthand notations for the parameters in the two equations 
where we have eliminated   and . First we repeat the two equations below: 
 
The equations of motion for the variable θ: 
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We divide with l1 l2: 
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Introducing a1,… a6  for the constants in the equation. 
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And introducing the numerical data: kgmkgmmlml 030,0,10,0,20,0,50,0 2121   
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The resulting reduced differential equation for θ. 
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The equation of motion for the variable φ. 
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We divide by l1 l2: 
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Introducing b1,… b6 for the constants in the equation. 
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The resulting reduced differential equation for φ. 
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(3.7) )(107.092.192.1))()(975.0009.0(     

We thus have two coupled differential equations of second order: 
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(3.8) 
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It is enough to cast a qualified glance at the two equations to exclude any analytic solution, 
however a numeric graphic solution is within reach, with the right computer program. 
 
Although such programs may exist, I prefer to use my own, which among many other things is 
able to solve up to 6 coupled second order differential equations. It was written in Turbo Pascal in 
1994 -1995, before the windows interface, so the windows –like interface is handmade. 
The program can however not run Windows above Windows XP, and to make screen dumps one 
has to use Windows 98. 
I have tried other programs, but I don’t think they give the same possibilities.   
 
In the numeric solution, the two pendulums are first assumed to have the same deflection,  
namely pi/6 at t = 0. 
I have displayed three graphs for θ and φ in the printout from the program. 
All the graphs are made with the numeric values from above. 
The first graph below shows the oscillations of the largest pendulum at the bottom, and the 
oscillations of the smaller pendulum above.   
The next graph is done with the same parameters, but the upper graph is the difference in 
deflection between the two pendulums.  
 
   Graph (3.9)               Graph (3.10) 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we however initially choose a moderate different deflection angle, the oscillations become 
chaotic, as shown in the third graph below. 
However the graph is probably not realistic, since the deflections become so large, that the 
approximations 1cossin  xandxx  can not be used any longer. 
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    Graph (3.11) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Eliminating either θ’’ or φ’’ from the two equations, without the 
assumptions of small oscillations 
We start out from the equations with no approximations. First we establish the equation of motion 
for the variable   
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Then we proceed to establish the equations of motion step by step for the variable φ 
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And our aim is as before to solve the two equations for   and . 
We write again the two equations below each other: 
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We do this by multiplying the first equation by )cos(1  l  and the second equation by 2l  and 
add the two equations to eliminate   
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Adding the two equations gives: 
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We then isolate    from III: 
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We shall then isolate  .  We write again the two Lagrange equations:  
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We multiply the first equation by )( 211 mml   and the second equation by )cos(22  lm  
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Adding the two equations: 
 

IV:  

0))sin(sin)())(sin()(cos(

))sin(sin))(sin()((

)()cos()cos(

21212121222

21222212211

2
22211212



















llmglmmllmlm

llmglmllmmml

lmmmlllm

 

 
And reducing a bit 
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These two coupled second order differential equations III and IV look certainly frightening, but 
solving numerically should be possible. 
Unfortunately the computer program I use (written in Borland Pascal Turbo 7.0) can only have 
255 characters in a string. And that is exceeded for the general differential equations. 
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4. Horizontally coupled harmonic oscillations 
Below is a sketch, showing an example of horizontal  coupled harmonic oscillations.  
If the masses m1 and m2 were only fixed to the wall with independent springs, having the strengths 
(spring constants) k1 and k3, then both masses would perform harmonic oscillations with the 
periods:  
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This is because of Hooke’s law: kxFspring   , where k [N/m] is the spring constant (strength). 

 This result in the equation of motion.  
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by inserting the expression for x  in (4.2). Since 
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 2
 , where T is the period, we find:  
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The potential energy of a spring, when it is prolonged or compressed an amount x from its initial 
length, can be found by using Hooke’s for the force. 
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The case of two independent harmonic oscillators both with a constant period, will no longer hold, 
when the who masses are bound together with a third spring with strength k2.  
 
The system may be analyzed in various ways, here we shall initially use the Lagrange formalism, 
as we did for the coupled pendulums, (where it was necessary). The Lagrange function is: 
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(4.3)   L = T – U  
Where:  

  T = Ekin (The kinetic energy)     and     U = Epot (The potential energy). 
 

A bullet above a variable means as usual differentiating with respect to time. 
For example: 22 /,/ dtxdxdtdxx   .  
 
If the system is described with the generalized coordinates qi, then the Lagrange equations of 
motion are: 
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For a system of two masse, bound together with springs obeying Hooke’s law, the (generalized) 
coordinates are x1 and x2, which are the positions of the two masses.  
So all that we have to do is to express the kinetic and potential energy of the system in these 
coordinates and plug it into (4.4). 
The rest lengths of the three springs are set to be l1 , l2 , l3 . and we put  l = l1 + l2 + l3 . 
 

(4.5)  2
222

12
112

1 xmxmEkin    

 
The potential energy of a spring, stretched by x  is according to (4.2) 2
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So we find for the potential energy of the three springs: 
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However this system may also be analyzed directly by writing down Newton’s 2. law for the two 
masses of the system. 
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It is hardly possible to establish any analytic solutions to these coupled differential equations, so 
we settle for a graphic computer solution, using some suitable constants for the parameters of the 
system. First we have to reduce the equations a bit. 
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Below is shown some computer generated solution, the first one with a rather weak coupling, and 
the second with a stronger coupling. The latter having a strong deviation from a pure harmonic 
oscillation. 
 
            
           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Vertically coupled harmonic oscillations 
 
    

This system is simpler, compared to the previous one, because 
there are only two springs instead of three. We therefore 
establish the equation of motion directly from the acting forces, 
which are the forces from the springs and gravity.  
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The equations are reduced to: 
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The figure to the left shows a computer generated solution 
to the equations (5.1) 
The drawback with a numerical solution is of course that 
the parameters of the system can be chosen in an infinite 
number of ways. We may never reach the grand 
overview, when making an analysis of an analytic 
solution. 
 
The deviation from the pure harmonic solution are 
however less significant, than that of the horizontally 
coupled oscillations.  
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